Practice Test Answer and Alignment Document Mathematics - Grade 10

Part A

Item Number	Answer Key	Kentucky Academic Standard	Mathematical Practices
1.	D	KY.HS.N. 2	MP. 8
2.		KY.HS.F.4.a	MP.4, MP. 5
3.	See rubric	KY.HS.F.7.a	MP.4, MP. 5
4.		KY.HS.A.25.b	MP. 6

Part B

Item Number	Answer Key	Kentucky Academic Standard	Mathematical Practices
1.	Kim's equation would be most appropriate to use to predict a population of \square 14,745 people in a town with an area of 7.2 square kilometers.	KY.HS.SP.6.a	MP.2, MP. 8
2.	C, E	KY.HS.G. 6	MP. 1
3.	See rubric	KY.HS.F.5.a	MP. 2
4.	$\mathbf{0 . 3}$ or equivalent number	KY.HS.SP.8.a	MP. 5
5.	$x=\frac{3+\sqrt{ } 189}{10}$ and $x=\frac{3-\sqrt{ } 189}{10}$ or equivalent numbers	KY.HS.A.19.a	MP. 7
6.	See rubric	KY.HS.F.3.a	MP.2, MP. 4
7.	D	KY.HS.F.3.a	MP. 2

Rubrics

Part A \#3

Rubric

Score Point 2	Student demonstrates a complete understanding of using the formula for an arithmetic sequence to model a situation.
Score Point 1	Student demonstrates a partial understanding of using the formula for an arithmetic sequence to model a situation.
Score Point 0	Student response is insufficient to demonstrate a grade-appropriate, relevant understanding of the task.
Score Points	- Score 2 points: - Correct formula with a complete explanation. - Score 1 point: - Correct formula with a partial explanation. OR - Explanation indicates a partial understanding of using the formula for an arithmetic sequence to generate terms.
Correct Answer	The sequence increases by 3 from one term to the next. I determined this by finding the rate of change. $\frac{23-2}{8-1}=\frac{21}{7}=3$ Then I used the formula $a_{n}=a_{1}+(n-1) d$ to write an equation that could be used to find the nth term of the arithmetic sequence. The initial value, a_{1}, is 2 . The common difference, d, is 3 . $a_{n}=2+3(n-1)$ Note: - Other valid explanations are acceptable. - Equivalent equations are acceptable. - Variable substitution is allowed.

Part A \#5

Rubric

The total item score is the sum of points awarded in the Machine-scored and Human-scored parts.

Machine Scoring

Machine Scoring	
Score Point 1	Part A Student response is the correct graph of $f(x)$, with the vertex at $(-1,-3)$.
Score Point 0	Student response is incorrect.
Human Scoring	
Score Point 3	Student scores a total of 3 points.
Score Point 2	Student response is incorrect.
Score Point 1	Student demonstrates a minimal understanding of comparing the properties of two functions, each represented in a different way.
Score Point 0	Student response is insufficient to demonstrate a grade-appropriate, relevant understanding of the task.
Score Points	Part B - Score 3 points: - Complete explanations of how the two functions compare using their values. - Score 2 points: - Complete explanation of how the minima compare using their values with a partial explanation of how the widths compare. OR - Complete explanation of how the widths compare using their values with a partial explanation of how the minima compare. - Score 1 point: - Partial explanation of how the minima compare using their values with a partial explanation of how the widths compare. OR - Only one of the explanations is complete. OR - Partial explanation of how the minima compare using their values with a minimal explanation of how the widths compare. OR - Partial explanation of how the widths compare using their values with a minimal explanation of how the minima compare. OR - Explanations of how the two functions compare with no references to their values.
Correct Answer	Part B The minimum of $f(x)$ is $(-1,-3)$ and is located below the minimum of $g(x)$ which is $(1,2)$. The width of is $f(x)$ represented by the value of 2 , and the width of $g(x)$ is represented by the value of 1 . Function $g(x)$ is wider than $f(x)$ because the lesser the value of a the wider the shape of the parabola.

Part B \#3

Rubric

Score Point 4	Student scores 4 points.
Score Point 3	Student scores 3 or 3.5 points.
Score Point 2	Student scores 2 or 2.5 points.
Score Point 1	Student scores $0.5,1$, or 1.5 points. OR Student demonstrates a minimal understanding of identifying zeros and extreme values of the graph within the context of a quadratic function.
Score Point 0	Student response is insufficient to demonstrate a grade-appropriate, relevant understanding of the task.
Score Points	Part A - Score 2 points: - Correct answers with a complete explanation or work provided. - Score 1.5 points: - Correct answers with a partial explanation or work provided. - Score 1 point: O Correct answers with no work or explanation provided. OR - One correct answer with valid work or explanation provided. - Score 0.5 point: - Demonstrates a minimal understanding of the extreme value of the graph within the context of a quadratic function. Part B - Score 2 points: - Correct answers with a complete explanation or work provided. - Score 1.5 points: - Correct answers with a partial explanation or work provided. - Score 1 point: - Correct answers with no work or explanation provided. OR - Incomplete explanation with zeros identified without specifying the meaning of the zeros. - Score 0.5 point: - Demonstrates a minimal understanding of identifying zeros of the graph within the context of a quadratic function.
Correct Answer	Part A The maximum value of $P(x)$ is the vertex located at $(3,225)$ on its graph. The point represents the price that would yield the maximum weekly profit. The price of $\$ 3$ will yield a maximum weekly profit of $\$ 225$. Part B The prices that would make the weekly profit $\$ 0$ are $\$ 0$ and $\$ 6$ because the zeros of the function are: $\begin{aligned} & 0=-25 x^{2}+150 x \\ & 0=-25 x(x-6) \\ & 0=-25 x \text { and } 0=x-6 \\ & 0=x \text { and } 6=x \end{aligned}$

Part B \#6

Rubric

Score Point 2	Student demonstrates a complete understanding of calculating and interpreting the average rate of change of a function presented as a table over a specified interval.
Score Point 1	Student demonstrates a partial understanding of calculating and interpreting the average rate of change of a function presented as a table over a specified interval.
Score Point 0	Student response is insufficient to demonstrate a grade-appropriate, relevant understanding of the task.
Score Points	- Score 2 points: - Correct value and interpretation. - Score 1 point: - Correct value. OR - Correct interpretation.
Correct Answer	The average rate of change is $\frac{2}{7}$. The plant's height increases at an average rate of $\frac{2}{7}$ centimeters per day. NOTE: Other reasonable interpretations of the average rate of change are acceptable.

